La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.
Riesgos para la seguridad y la integridad
La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:
- Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
- Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
- Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.
Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.
Derechos humanos, privacidad y vigilancia
La IA genera desafíos para los derechos civiles y las libertades públicas:
- Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
- Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
- Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.
Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.
Promoción de la igualdad, rechazo a la discriminación e impulso de la inclusión
Los modelos pueden reproducir o amplificar sesgos existentes si los datos de entrenamiento no son representativos:
- Discriminación algorítmica: evaluaciones independientes, métricas de equidad y mecanismos de reparación.
- Acceso y desigualdad global: riesgo de concentración de capacidad tecnológica en pocos países o empresas; necesidad de transferencia de tecnología y cooperación para capacidades locales.
Dato y ejemplo: diversas investigaciones han evidenciado que los modelos formados con información sesgada ofrecen un rendimiento inferior para los colectivos menos representados; por esta razón, crece la demanda de iniciativas como las evaluaciones de impacto social y los requisitos de pruebas públicas.
Claridad, capacidad de explicación y seguimiento
Los reguladores analizan cómo asegurar que los sistemas avanzados resulten entendibles y susceptibles de auditoría:
- Obligaciones de transparencia: comunicar cuando una resolución automatizada impacta a una persona, divulgar documentación técnica (fichas del modelo, fuentes de datos) y ofrecer vías de reclamación.
- Explicabilidad: proporcionar niveles adecuados de detalle técnico adaptados a distintos tipos de audiencia (usuario final, autoridad reguladora, instancia judicial).
- Trazabilidad y registro: conservar registros de entrenamiento y operación que permitan realizar auditorías en el futuro.
Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.
Cumplimiento y responsabilidad legal
La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:
- Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
- Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
- Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.
Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.
Propiedad intelectual y acceso a datos
El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:
- Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
- Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.
Caso: varios litigios recientes en distintos países cuestionan la legalidad de entrenar modelos con contenidos protegidos, impulsando reformas legales y acuerdos entre sectores.
Economía, empleo y competencia
La IA es capaz de remodelar mercados, empleos y la organización empresarial:
- Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
- Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
- Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
El impacto energético y material de entrenar y operar modelos es objeto de regulación y buenas prácticas:
- Huella de carbono: entrenamiento de modelos muy grandes puede consumir energía significativa; indicadores y límites son discutidos.
- Optimización y transparencia energética: etiquetas de eficiencia, reporte de consumo y migración a infraestructuras con energía renovable.
Estudio relevante: diversos análisis han puesto de manifiesto que entrenar modelos de lenguaje de manera intensiva puede llegar a producir emisiones comparables a decenas o incluso cientos de toneladas de CO2 cuando el proceso no se optimiza adecuadamente.
Regulaciones técnicas, estándares y procesos de interoperabilidad
La adopción de estándares facilita seguridad, confianza y comercio:
- Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
- Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
- Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.
Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.
Verificación, cumplimiento y mecanismos multilaterales
Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:
- Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
- Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
- Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.
Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.
Instrumentos normativos y recursos aplicados
Las respuestas normativas pueden adoptar formatos rígidos o enfoques más adaptables:
- Regulación vinculante: normas nacionales o regionales que establecen deberes y contemplan sanciones (por ejemplo, una propuesta legislativa dentro de la Unión Europea).
- Autorregulación y códigos de conducta: lineamientos promovidos por empresas o asociaciones que suelen ofrecer mayor rapidez, aunque con requisitos menos estrictos.
- Herramientas de cumplimiento: análisis de impacto, auditorías externas, sellos de conformidad y espacios regulatorios de prueba destinados a evaluar nuevas políticas.
Gobernanza democrática y participación de la ciudadanía
La legitimidad de las reglas depende de la inclusión:
- Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
- Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.
Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.
Sobresalientes tensiones geopolíticas
La carrera por la primacía en IA implica riesgos de fragmentación:
- Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
- Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.
Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.
Iniciativas y menciones multilaterales
Existen varias iniciativas que sirven de marco de referencia:
- Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
- Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
- Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.
Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.
La gobernanza internacional de la IA se configura como un sistema en constante evolución que ha de armonizar requerimientos técnicos, principios democráticos y contextos geopolíticos. Para que las respuestas resulten efectivas, se precisan marcos regulatorios definidos, procesos de verificación fiables y mecanismos
